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Abstract. Two-dimensional stability of a controlled Bose-Einstein condensation state, in the form of a
nonlinear Schrödinger soliton [JETP Lett. 80 535 (2004)], is studied for the condensations with both
repulsive and attractive inter-atom interactions. The Gross-Pitaevski equation is solved numerically, taking
initialy a controlled soliton whose “effective mass” is several times bigger than the critical value for a weak
collapse in the absence of a potential well, and allowing for reasonably large errors in the experimental
realization of the trapping potential required by the theory. For repulsive and sufficiently weak attractive
interactions, the controlled state is shown to remain stable inside a breathing potential well, for a time that
is an order of magnitude longer than the characteristic periods of the forced and eigenoscillations of the
soliton. The collapse is observed only for attractive interactions, when the nonlinear attraction exceeded
the appropriate threshold.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 05.45.Yv Solitons – 05.30.Jp Boson systems

In the gas of identical bosons, particles may stimulate
each other to occupy the lowest energy state, leading to a
phase transition known as the Bose-Einstein condensation
(BEC). It gives rise to a macroscopic quantum-mechanical
state [1–3], described by a macroscopic quantum wave-
function. First, the BEC states were realized with mu-
tually repelling atoms, e.g. 87Rb, 23Na, 7Li, using ad-
vanced trapping techniques, such as the laser cooling in
combination with magnetic evaporative cooling (for alkali
atoms), and the evaporative cooling (for hydrogen) [4,5].
More recently, BEC states with the attracting interaction
between atoms were also achieved, in the form of trains
of one-dimensional (1-D) bright solitons, using all-optical
traps, and controlling the interactions between the atoms
by an oscillating magnetic field, via the Feschbach reso-
nance [6,7]. It has been suggested that stable attractive
2-D and 3-D BEC solitons are also possible. A 2-D ana-
lytic theory based on the variational approximation, [8],
together with 2-D and 3-D numerical simulations [9], pre-
dicted that they might be created in the periodic external
potential of an optical lattice, while [10,11] suggested that
the collapse of 2-D BEC solitons could be prevented also
by parabolic potentials.
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Existing technologies allow the design of an almost ar-
bitrary potential well for a BEC experiment. Such are the
lithographically fabricated circuit patterns, that provide
electromagnetic guides and microtraps for ultracold sys-
tems of neutral atoms [12,13]. Even more “exotic” shapes
of traps are achieved by the use of optically induced po-
tentials [14]. Such versatility of the traps enables the pro-
duction of a desired BEC spatial profile, by appropriately
adjusting the potential well. In a recent paper, [15], a
method was proposed for the filtering and control of sta-
tionary soliton-like states associated with the longitudi-
nal dynamics of BECs, by controlling only a few external
parameters. It was demonstrated that for an almost arbi-
trary a priori choice of the desired parameters of the solu-
tion, which belonged to the family of exact 1-D nonlinear
Schrödinger solitons in the parallel direction and appropri-
ately modulated in the perpendicular direction, one could
self-consistently determine the necessary trapping poten-
tial. The nonlinear stability of such controlled BEC states
was studied numerically [16] in a purely longitudinal, one-
dimensional (1-D) case, but their perpendicular stability
remained an open issue.

In this paper, we study the stability of a controlled
BEC state in two dimensions. The Gross-Pitaevski equa-
tion is solved numerically, allowing for reasonably large
(typically ∼10%) errors in the experimental realization
of the ideal trapping potential, predicted by theory. We
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consider BECs with both repulsive and attractive inter-
atom interactions, and controlled states whose effective
mass exceeds the critical mass for a 2-D collapse of NLS
solitons without an external potential. Two modes of os-
cillations, with similar characteristic frequencies, are de-
tected – the eigenoscillations of a soliton that was initially
displaced from the center of the well and the forced oscilla-
tions due to the “breathing”. For repulsive and sufficiently
weak attractive interactions, the controlled state remains
stable for at least ten periods of oscillations.

The Gross-Pitaevski (GP) equation
(
i∂t + ∇2 + β|ψ|2)ψ = vψ, (1)

arises frequently in physics, usually as an asymptotic ap-
proximation to a slowly varying wave envelope in the
presence of an external potential. It is important for the
studies in nonlinear optics, plasma physics, Bose-Einstein
condensate, water waves, etc. The BEC is weakly interact-
ing when |β| = O(1), with β < 0 ( β > 0) corresponding
to the repulsive (attractive) inter-atom interactions. Here
ψ and v are the normalized wave function and the exter-
nal potential, respectively. The latter depends explicitly
on spatial and temporal coordinates.

Equation (1) has a number of interesting properties,
the most important being that it can be integrated in some
important special cases. For example, in the 1-D limit

[
i∂t + ∂z,z + β |ψ (z, t)|2

]
ψ (z, t) = v (z)ψ (z, t), (2)

it is completely integrable if the potential function, v(z),
is equal to zero. For β = 2, it reduces to the standard
nonlinear Schrödinger (NLS) equation

[
i∂t + ∂z,z + 2

∣
∣Ψ‖

∣
∣2

]
Ψ‖ = 0. (3)

The solution of equation (3), for an arbitrary initial condi-
tion, is the ensemble of solitons, immersed in the ‘bath’ of
radiation. A soliton is determined by two free parameters,
a and b, and has the form

Ψ‖ (a, b, z, t) = a ei[(a2−b2)t+bz] sech [a (z − 2bt)] . (4)

Now, we seek a solution of a more general 1-D GP equa-
tion, with v(z) �= 0. A simple coherent structure can
be constructed for a limited class of external potentials
v (z), if we require that the soliton Ψ‖(a, b, z, t) satisfies
also the Gross-Pitaevski equation (2), i.e. that ψ(z, t) =
Ψ‖(a, b, z, t). Subtracting the above GP and NLS equa-
tions, we obtain that this is possible if the external poten-
tial v (z) is given by

v (z) = V (a, z) ≡ (β − 2)|Ψ‖ (a, 0, z, t) |2. (5)

In the above, we adopted b = 0, in order to have an exter-
nal potential v that is independent on time. Conversely,
adopting different values for the parameter a in the exter-
nal potential, we can produce the solution of a 1-D GP
equation with desired amplitude and spatial extend. Such
solution we refer to as being controlled.

The question arises whether it is possible to control the
solutions of the GP equation also in more realistic geome-
tries, such as in 2-D and 3-D traps, and under which con-
ditions such solution can be stable. For a two-dimensional
Gross-Pitaevski (GP) equation

[
i∂t + ∂x,x + ∂z,z + β |ψ(x, z, t)|2

]
ψ(x, z, t) =

v (x, z)ψ(x, z, t), (6)

we seek the solution in the form

ψ(x, z, t) = ψ⊥ (x, t)ψ‖ (x, z, t) , (7)

where the function ψ⊥ (x, t) satisfies a linear 1-D
Schrödinger equation, viz.

(i∂t + ∂x,x)ψ⊥ (x, t) = v⊥ (x, t)ψ⊥ (x, t) . (8)

Then, the longitudinal wave function ψ‖ (x, z, t) satisfies
the following equation

[

i∂t + ∂x,x + ∂z,z + 2
∂xψ⊥ (x, t)
ψ⊥ (x, t)

∂x

+ β |ψ⊥ (x, t)|2 ∣∣ψ‖ (x, z, t)
∣∣2

]

ψ‖ (x, z, t) =

v‖ (x, z, t)ψ‖ (x, z, t) , (9)

where v‖ (x, z, t) = v (x, z, t) − v⊥ (x, t). Without the loss
of generality, we adopt a stationary and parabolic perpen-
dicular controlling potential v⊥(x, t) = x2/2, i.e. we take
that the 1-D equation (8) describes a linear oscillator. Its
general solution is readily available in terms of normalized
Hermite-Gauss modes, that constitute a complete set, viz.

ψ⊥ (x, t) = Ψ⊥ (x, t, σ0, γ0, k) ≡
∞∑

k=0

αk

[
π22k+1(k!)2σ (t)2

]− 1
4

× exp

[

iγ (t)
x2

4
− x2

4σ (t)2
+ iφ (t)

]

Hk

[
x√

2σ (t)

]
. (10)

Here αk is the arbitrary amplitude of the k-th mode, Hk

is a Hermite polynomial of the order k, the functions σ, γ
and φ are given by

σ (t) =
1√
2σ0

×
√

1+γ2
0σ

4
0+2γ0 sin(2t)σ4

0 +σ4
0−[(γ2

0−1)σ4
0+1] cos(2t)

(11)
γ(t) =

4γ0 cos(2t)σ4
0+2[(γ2

0−1)σ4
0+1] sin(2t)

2{1+γ2
0σ

4
0+2γ0 sin(2t)σ4

0+σ4
0−[(γ2

0−1)σ4
0+1] cos(2t)}

(12)
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φ (t) = −1
2
(2k + 1) cot−1

[
σ2

0(γ0 + cot (t))
]
, (13)

and γ0 and σ0 are the initial values γ0 = γ(0) and σ0 =
σ(0). It is instructive to present some simple special cases
of the solution for the linear oscillator, equation (10), and
a more extensive discussion is presented in reference [16].
• In the simplest case, γ0 = 0, σ0 = 1, we have

σ (t) = 1, γ (t) = 0, φ (t) = −1
2
(2k + 1) (14)

and the perpendicular solution reduces to a time-
stationary Hermite-Gauss function

ψ⊥ (x, t) =
∞∑

k=0

αk

exp
{

1
4

[−x2 − 2i(2k + 1)
]}

4
√
π22k+1(k!)2

Hk

(
x√
2

)
.

(15)
• For γ0 = 0, σ0 �= 1, we have

σ (t) =
1√
2σ0

√
1 + σ4

0 + (σ4
0 − 1) cos (2t) (16)

γ (t) =

(
1 − σ4

0

)
sin (2t)

1 + σ4
0 + (σ4

0 − 1) cos (2t)
(17)

φ (t) = −1
2
(2k + 1) cot−1

[
σ2

0 cot (t)
]
. (18)

• For γ0 �= 0, σ0 = 1, we have

σ (t) =
1√
2

√
2 − cos (2t) γ2

0 + γ2
0 + 2 sin (2t)γ0 (19)

γ (t) =
γ0(2 cos (2t) + γ0 sin (2t))

2 − cos (2t) γ2
0 + γ2

0 + 2 sin (2t) γ0
(20)

φ (t) = −1
2
(2k + 1) cot−1 [γ0 + cot (t)]. (21)

Obviously, expressions (16)–(18) and (19)–(21), after a
substitution into equation (10), give Hermite-Gauss func-
tions that are periodic in time, with the period π. As
shown in reference [16], such periodicity gives rise either
to the oscillatory “breathers” in the transverse BEC prob-
ability density of matter waves, |ψ⊥|2, or to its motion as
a rigid body in the form of Lissajous figures, or it exibits
a Schrödinger cat state.

We conveniently adopt a potential v‖ (x, z, t) with the
following spatial dependence

v‖ (x, z, t) = V‖ (a, x, z, t) ≡
[
β |Ψ⊥ (x, t, σ0, γ0, k)|2 − 2

] ∣
∣Ψ‖ (a, 0, z, t)

∣
∣2 (22)

where Ψ‖ and Ψ⊥ are given by equations (4) and (10).
Then, our 2-D GP equation (6) reduces to

{

i∂t + ∂x,x + ∂z,z + 2
∂xψ⊥ (x, t)
ψ⊥ (x, t)

∂x + 2
∣
∣Ψ‖ (a, 0, z, t)

∣
∣2

+ β |ψ⊥ (x, t)|2
[∣∣ψ‖ (x, z, t)

∣∣2

− ∣
∣Ψ‖ (a, 0, z, t)

∣
∣2

]
}

ψ‖ (x, z, t) = 0, (23)

which obviously possesses one 1-D particular solution
(∂x = 0) in the form of a NLS soliton

ψ‖ (x, z, t) = Ψ‖ (a, 0, z, t) ≡ a eia2tsech (az) . (24)

This solution was proposed in reference [15], and its prop-
erties were studied extensively in [16]. Similarly to the 1-D
case, it can be regarded as being controlled, since its ba-
sic properties (amplitude, longitudinal and perpendicular
spatial scales, etc.) are determined by the external poten-
tial v‖. Tuning the parameters a, αk, γ0, and σ0, we can
produce BEC states whose main features, the amplitude
and the spatial extend, are prescribed in advance.

The theory [15] was based on the separation of paral-
lel and perpendicular dynamics even in a nonlinear state,
yielding the parallel solution in the form of a NLS soli-
ton. However, in more than one spatial dimension and
without the external potential, the slab NLS soliton (24),
is unstable to perpendicular perturbations, which trigger
its fillamentation and collapse [17]. For reviews about the
NLS collapse see [18,19]. More detailed analytic analyses
revealed that a cylindrically symmetric solitary solution
of the NLS equation (6), with ∂x,x +∂z,z = (1/r)∂r +∂r,r,
r = (x2 + z2)

1
2 , and β = 2, becomes unstable if its “mass”

exceeds a critical value [20,21],

M ≡
∫ ∞

0

2r dr |ψ (r, t)|2 > 5.84. (25)

A rough estimate for the characteristic perpendicular spa-
tial scale of filamentation of a slab soliton, equation (24),
can be made taking that its characteristic “critical mass”
is comparable to the above, viz.

L⊥ ∼ 5.84
∫ ∞
−∞

∣
∣ψ‖ (x, z, 0)

∣
∣2 dz

. (26)

It is necessary to check the 2-D stability of BEC solitons
in the presence of a controlling potential. While the stabil-
ity of 2-D BEC structures has been confirmed for a class
of periodic [8,9] and parabolic [10,11] trapping poten-
tials, the stability properties of the bell-shaped potential
well with finite depth, prescribed above, is still unknown.
Furthermore, under realistic experimental conditions, the
controlling potential is always realized with a certain devi-
ation from its ideal form, equation (22). The perturbation
of equation (23), resulting from such deviation, depends
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explicitly on the soliton phase, and may grow secularly
on a long timescale. Then, an important question arises
whether in the presence of small but finite deviations (or
errors) of the trapping potential, the solution of the 2-D
GP equation remains stable, i.e. if it remains close to the
soliton, equation (24), or deviates from it, and in particu-
lar, whether such deviation grows with time and possibly
results in the destruction of the soliton.

In the 1-D case, ∂xψ‖ = 0, equation (23) was exten-
sively studied in reference [16]. Detailed numerical simu-
lations revealed that the solution ψ‖ remained stable for a
broad class of errors in the experimental realization of the
controlling potential, including deviations of more than
10% in the width and depth of the longitudinal poten-
tial well, as well as the asymmetries of the potential well
and of the initial position of the soliton. The solution re-
mained confined inside a non-ideal controlling potential
for a long time, exhibiting longitudinal oscillations. Only
a small part (<10%) was lost due to “radiation”, while
the most part of BEC remained stable and preserved its
shape.

We proceed by looking into the 2-D stability properties
of the solution (24). Without loss of generality, we adopt
the external potential v‖ in equation (23) in the form

v‖ (x, z, t) = δv⊥ (x, t)

+
[
β |ψ⊥1 (x, t)|2 − 2

] ∣
∣ψ‖1

(z, t)
∣
∣2 , (27)

where δv⊥ (x, t) is the small deviation of the perpendicu-
lar potential from an exact parabolic dependence, and ψ⊥1

and ψ‖1
are functions that are close to, but not identical

to the exact solutions ψ⊥ and ψ‖, given by equations (10)
and (24). To establish the stability of the solution, equa-
tion (24), it would be necessary to solve our basic equa-
tion (23) with (27), for arbitrary functions δv⊥(x), ψ⊥1,
and ψ‖1

. That is impossible to do numerically, and we re-
strict ourselves to a more modest task with δv⊥ = 0, with
ψ⊥1 and ψ‖1

having the same form as their ideal coun-
terparts ψ⊥, and ψ‖, with slightly different parameters,
viz.

ψ‖1
(z, t) = α‖Ψ‖

(
a, 0,

z − δz

λ‖
,
t

τ‖

)
, (28)

ψ⊥1 (x, t) = α⊥Ψ⊥

(
x− δx

λ⊥
,
t

τ⊥
, σ1, γ1, k

)
. (29)

The parameters α⊥, α‖, λ⊥, λ‖, τ⊥, and τ‖ are assumed
to be close (e.g. within a 10% margin) to unity, σ1 and
γ1 are close to the desired initial values, σ0 and γ0, that
correspond to the ideal perpendicular solution, while the
displacements δx and δz are small compared to the soliton
size. We consider only the simplest perpendicular solution
ψ‖, which corresponds to the ground state of a linear os-
cillator, viz.

ψ⊥ (x, t) = C exp
(−i t/2− x2/4

)
, (30)

i.e. to the Hermite-Gauss function with αk = 0, when
k �= 0, γ0 = 0, and σ0 = 1. C is an arbitrary constant.

Equation (23) was solved numerically on a standard
PC. We used the method of lines, with a finite difference
discretization of the spatial variables x and z, with 50×20
points. Such relatively small resolution was sufficient to
study the BEC dynamics with times up to tmax = 30, i.e.
for almost ten oscillations of the non-ideal potential ψ⊥1,
and to detect the onset of possible instabilities1. Then, at
t = 0, the controlled solution ψ ≡ ψ‖ψ⊥ takes the simple
form

ψ (x, z, 0) = aC exp
(−x2/4

)
sech (az) . (31)

First, we studied the case of a repulsive inter-atom in-
teraction, β < 0. The controlled soliton solution remained
remarkably robust during its temporal evolution. For rela-
tively shallow perpendicular potentials, corresponding to
aC � 1, only small amplitude forced oscillations were
detected, associated with the “breathing” of the external
potential v‖(x, z, t), equation (27), associated with the os-
cillations of the function ψ⊥1, equation (29). For stronger
perpendicular dependence of v‖(x, z, t), i.e. when aC > 1,
the oscillations of the solution were more pronounced,
sometimes approaching 50% of the initial value. Besides
the forced oscillations due to the breathing of the control-
ling potential, also the eigenoscillations were observed, if
the soliton was initially displaced from the center of the
well. The characteristic frequencies of both types of oscilla-
tions were comparable. The oscillations were accompanied
with relatively small emission of the soliton “mass”, both
in the parallel and perpendicular directions (but due to
the applied periodic boundary condition, the emitted mass
would reenter the soliton on the opposite side). The effec-
tive mass of the soliton exceeded several times the critical
mass for a weak, or 2-D, collapse of nonlinear Schrödinger
solitons in the absence of an external potential, but the
collapse/filamentation instability was not observed. Even
the accumulation of the numerical error (noticeable as the
striation of the solution, with the scalelength commeasur-
able with the step size of the grid in the x direction) did
not trigger any filamentation. The calculation was termi-
nated around t = 27, due to the build up of numerical er-
rors. Similar results were obtained also for weak attractive
interactions, β = 0.15, featuring only slightly larger forced
oscillations of the soliton amplitude. For strong attrac-
tive interactions, β = 1, a collapse/fillamentation occurred
during the time shorter than the period of oscillations. For
intermediate attractive potentials, 0.15 � β � 1, soliton
oscillations with growing amplitudes were observed, but
due to the rapid accumulation of numerical error we were
not able to follow the full dynamics and to determine the
exact threshold (in β) for the collapse.

Typical results are displayed in Figure 1. These plots
were obtained with the following choice of the parameters
a = 1.5, C = 1.58, k = 0, γ0 = 0, σ0 = 1, γ1 = 0.05,
σ1 = 0.95, α⊥ = 0.9, α‖ = 1.15, λ⊥ = 0.9, λ‖ = 1.2, τ⊥ =
1.15, τ‖ = 1.3, with β = −1, β = 0.15, and β = 1. The
initial displacements of the soliton from the center of the

1 This was tested by solving a 2-D NLS equation by the
same code, yielding a filamentation instability with the spatial
period close to the predicted length, equation (26).
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t=0 t=3.2 t=14.4 t=24

= -1

=0.1

=1

Fig. 1. Temporal dependence of the wavefunction. For the times indicated in the figure, from top to bottom are shown the
perpendicular wavefunctions, |ψ⊥|2 and |ψ⊥1|2 (dashed and solid lines, respectively, plots in the first row), and the complete
wavefunction |ψ|, for repulsive interactions (β = −1, second row), weak attractive interactions (β = +0.15, third row) and
stronger attractive interactions (β = +1, fourth row). The parameters are adopted as a = 1.5, C = 1.58, k = 0, γ0 = 0, σ0 = 1,
γ1 = 0.05, σ1 = 0.95, α⊥ = 0.9, α‖ = 1.15, λ⊥ = 0.9, λ‖ = 1.2, τ⊥ = 1.15, and τ‖ = 1.3. These plots are still frames, extracted
from the animations that are given in the “Online Material”.

potential well were δx = 0.2 and δz = 0.25. The critical
length for filamentation of NLS solitons, equation (26),
is estimated as L⊥ = 1.23, which is roughly 40% of the
width (in the x direction) of the controlled GP soliton,
equation (31). This is consistent with the results in the
unstable, i.e. sufficiently strong attractive case, when a
collapse into two filaments was observed.

The first row of Figure 1. shows the temporal de-
pendence of the intensities of the perpendicular wave-
functions, |ψ⊥|2 and |ψ⊥1|2 (dashed and solid lines,
respectively). The temporal evolution of the potential |ψ|
is displayed in the rows 2-4, for the cases of the repulsive
inter-atom interactions, β = −1, weak attractive inter-
actions β = +0.15 and stronger attractive interactions,
β = +1, respectively.

In conclusion, we have performed a systematic stabil-
ity study of a controlled BEC state in two dimensions.
A 2-D Gross-Pitaevski equation, for a weakly interacting
condensation with repelling inter-atom interactions, was
solved numerically, allowing for reasonably large (typically

∼10%) errors in the experimental realization of the ideal
trapping potential, and for a broad range of soliton pa-
rameters. Errors in the controlling potential that are as-
sociated with its “forced breathing”, produce the forced
oscillations of the soliton, while the asymmetries of the
soliton initial position inside the well lead to its eigenoscil-
lations. The characteristic frequencies of these oscillations
are of similar order. We considered BECs with both re-
pulsive and attractive inter-atom interactions, and con-
trolled solitons whose effective mass exceeded the critical
mass for a weak, or 2-D, collapse of nonlinear Schrödinger
solitons in the absence of a potential trap. For repul-
sive and sufficiently weak attractive interactions, the col-
lapse/filamentation instability was not observed, while
for stronger attractive interactions the collapse occurred
within a finite time, shorter than the period of soliton
oscillations. A better spatial resolution might be neces-
sary to follow the soliton evolution for longer times, which
would reveal the exact value of the threshold and the
time of collapse, in the case of intermediate strengths of
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repulsive interactions. In the case of stable oscillations (for
repulsive or weak attractive interactions), it would be in-
teresting to check if a resonance between its forced and
eigenoscillations, which can be made possible by the ap-
propriate choice of the width and depth of the potential
well, leads to the growing oscillations and the destruction
of the BEC state.
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